CFA考試
報(bào)考指南考試報(bào)名準(zhǔn)考證打印成績查詢備考資料考試題庫

重置密碼成功

請謹(jǐn)慎保管和記憶你的密碼,以免泄露和丟失

注冊成功

請謹(jǐn)慎保管和記憶你的密碼,以免泄露和丟失

當(dāng)前位置:首頁CFA考試視頻知識正文
當(dāng)前位置:首頁CFA考試CFA視頻正文

Expected Value and Variance

幫考網(wǎng)校2020-08-06 18:14:20
|
Expected value and variance are two important concepts in probability theory and statistics.

Expected value is the average value that we can expect to get from a random variable over a large number of trials. It is calculated by multiplying each possible outcome of the random variable by its probability and adding up the results. For example, if we roll a fair six-sided die, the expected value of the roll is (1/6) x 1 + (1/6) x 2 + (1/6) x 3 + (1/6) x 4 + (1/6) x 5 + (1/6) x 6 = 3.5.

Variance is a measure of how spread out a set of data is. It is calculated by taking the difference between each value and the expected value, squaring the result, multiplying it by the probability of that value, and adding up the results. For example, if we roll a fair six-sided die, the variance of the roll is [(1-3.5)^2 x 1/6] + [(2-3.5)^2 x 1/6] + [(3-3.5)^2 x 1/6] + [(4-3.5)^2 x 1/6] + [(5-3.5)^2 x 1/6] + [(6-3.5)^2 x 1/6] = 2.92.

In summary, expected value tells us what we can expect to get on average from a random variable, while variance tells us how spread out the possible outcomes are.
幫考網(wǎng)校
|

推薦視頻

推薦文章

  • 暫無文章
洮南市| 宝应县| 鄂尔多斯市| 长兴县| 璧山县| 海宁市| 慈利县| 高尔夫| 黄骅市| 专栏| 沈丘县| 商南县| 志丹县| 镇远县| 临泉县| 延庆县| 云浮市| 漾濞| 淮阳县| 昌吉市| 苗栗县| 福安市| 南阳市| 尼木县| 温宿县| 大洼县| 巴中市| 卓资县| 万荣县| 永靖县| 东安县| 仙桃市| 祥云县| 泌阳县| 耿马| 兰考县| 政和县| 高碑店市| 海门市| 顺义区| 三门县|