CFA考試
報考指南考試報名準(zhǔn)考證打印成績查詢備考資料考試題庫

重置密碼成功

請謹(jǐn)慎保管和記憶你的密碼,以免泄露和丟失

注冊成功

請謹(jǐn)慎保管和記憶你的密碼,以免泄露和丟失

當(dāng)前位置:首頁CFA考試視頻知識正文
當(dāng)前位置:首頁CFA考試CFA視頻正文

What is the difference between parametric testing and nonparametric testing?

幫考網(wǎng)校2020-10-13 17:13:45
|
Parametric testing and nonparametric testing are two types of statistical tests used to analyze data. The main difference between them is that parametric testing assumes that the data follows a specific distribution (usually a normal distribution), while nonparametric testing does not make any assumptions about the distribution of the data.

Parametric tests are more powerful and precise when the data follows a normal distribution. They require a larger sample size and may be less accurate if the data is skewed or has outliers. Examples of parametric tests include t-tests, ANOVA, and regression analysis.

Nonparametric tests are more flexible and robust when the data does not follow a normal distribution. They are less sensitive to outliers and require smaller sample sizes. Examples of nonparametric tests include the Wilcoxon rank-sum test, Kruskal-Wallis test, and Spearman's rank correlation coefficient.

In summary, parametric tests are more appropriate when the data follows a normal distribution and nonparametric tests are more appropriate when the data does not follow a normal distribution.
幫考網(wǎng)校
|

推薦文章

米易县| 邵阳县| 安陆市| 桐城市| 巴林右旗| 炉霍县| 抚松县| 巫山县| 台北县| 息烽县| 天气| 买车| 华宁县| 福鼎市| 秀山| 桐庐县| 讷河市| 长寿区| 惠州市| 蚌埠市| 宜兴市| 平和县| 双江| 阿坝| 庆元县| 扶绥县| 永吉县| 通化市| 抚州市| 曲沃县| 黄陵县| 平顶山市| 清徐县| 来凤县| 浠水县| 岢岚县| 阳谷县| 咸阳市| 侯马市| 神农架林区| 宝鸡市|